- UID
- 43755
- 精华
- 积分
- 4910
- 胶币
- 个
- 胶分
- 点
- 技术指数
- 点
- 阅读权限
- 70
- 在线时间
- 小时
- 注册时间
- 2010-2-26
- 最后登录
- 1970-1-1
|
马上注册,结交更多胶友,享用更多功能!
您需要 登录 才可以下载或查看,没有账号?注册
×
橡胶发展史 9 q U% v, n) E
人类使用天然橡胶的历史已经有好几个世纪了。哥伦布在发现新大陆的航行中发现,南美洲土著人玩的一种球是用硬化了的植物汁液做成的。哥伦布和后来的探险家们无不对这种有弹性的球惊讶不已。一些样品被视为珍品带回欧洲。后来人们发现这种弹性球能够擦掉铅笔的痕迹,因此给它起了一个普通的名字 “擦子(Rubber)”。这仍是现在这种物质的英文名字。这种物质就是橡胶。 4 U# i0 f/ {; E$ ]
6 N( ^8 Z, S. o4 ~7 f
但是直到1839年,美国人古德伊尔(Charles Goodyear)成功地将天然橡胶进行了硫化后,橡胶才成为有使用价值的材料。通过与硫磺一起加热进行硫化,实现了橡胶分子链的交联,使橡胶具备了良好的弹性。为什么橡胶会有弹性呢?让我们分析一下橡胶的分子结构。天然橡胶分子的链节单体为异戊二烯。我们知道高分子中链与链之间的分子间力决定了其物理性质。在橡胶中,分子间的作用力很弱,这是因为链节异戊二烯不易于再与其他链节相互作用。好比两个朋友想握手,但每个人手上都拿着很多东西,因此握手就很困难了。橡胶分子之间的作用力状况决定了橡胶的柔软性。橡胶的分子比较易于转动,也拥有充裕的运动空间,分子的排列呈现出一种不规则的随意的自然状态。在受到弯曲、拉长等外界影响时,分子被迫显出一定的规则性。当外界强制作用消除时,橡胶分子就又回原来的不规则状态了。这就是橡胶有弹性的原因。由于分子间作用力弱,分子可以自由转动,分子链间缺乏足够的联结力,因此,分子之间会发生相互滑动,弹性也就表现不出来了。这种滑动会因分子间相互缠绕而减弱。可是,分子间的缠绕是不稳定的,随着温度的升高或时间的推移缠绕会逐渐松开,因此有必要使分子链间建立较强固的联接。这就是古德伊尔发明的硫化方法。硫化过程一般在摄氏140-150度下进行。当时古德伊尔的小火炉正好起了加热的作用。硫化的主要作用,简单地说,就是在分子链与分子链之间形成交联,从而使分子链间作用力量增强。 " O8 m2 L# l# q7 Y; N* g- H
% W& ?- w6 v" T" Z9 r7 q
9 k* Z# l9 l' g" X& D6 Q橡胶的生产
2 [, ^% C9 X' ~
7 N# v! T- F0 T* ^: ]# I, g
8 f9 k: n+ H3 {9 [ p" Y3 e1 F4 w+ z* E# Z& M. v- k0 a
在过去的几千年间,人们所坐的车使用的一直是木制轮子,或者再在轮子周围加上金属轮辋。在古德伊尔发明了实用的硫化橡胶之后的1845年,英国工程师R.W.汤姆森在车轮周围套上一个合适的充气橡胶管,并获得了这项设备的专利,到了1890年,轮胎被正式用在自行车上,到了1895年,被用在各种老式汽车上。尽管橡胶是一种柔软而易破损的物质,但却比木头或金属更加耐磨。橡胶的耐用、减震等性能,加上充气轮胎的巧妙设计,使乘车的人觉得比以往任何时候都更加舒适。 随着汽车数量的大量增加,用于制造轮胎的橡胶的需求量也变成了天文数字。如此广泛的应用使天然橡胶供不应求。面对橡胶生产的严峻形势,各国竞相研制合成橡胶。 ; f& M3 G; |# u% Y5 e# o! H. l9 b- O5 s
! Q8 N, \" t* g1 L8 X 人们首先想到的是用天然橡胶的结构单元--异戊二烯来制造合成橡胶。早在1880年,化学家们就发现,异戊二烯放置过久就会变软发动,经酸化处理后则会变 成类似橡胶的物质。德皇威廉二世曾让人用这种物质制成皇家汽车的轮胎,借以炫耀德国化学方面的高超技艺。然而,用异戊二烯作为合成橡胶的原料,有两个困难:一是异戊二烯的主要来源正是天然橡胶本身;二是在天然橡胶长链中,所有的异戊二烯单元都朝同一方向;在固塔坡胶长链中,它们则是严格地按照一正一反的方向排列的,而人工聚合时异戊二烯单元往往是毫无规律地聚合在一起,得到的是一种既不是橡胶也不是固塔坡胶的物质。这种物质缺少橡胶的弹性和柔性,用不了多久就会变粘,所以不能用来制造汽车轮胎(仅用于国事活动的皇家汽车当然是个例外)。
' c) |' v% V$ z) j( k+ i" X- _$ s; I+ X! k5 W# {8 A* t* J: }
在第一次世界大战期间,迫于橡胶匾乏,德国人采用了二甲基丁二烯聚合而成甲基橡胶,这种橡胶可以 大量生产,而且价格低廉。在第一次世界大战期间,德国大约生产了 2500吨甲基橡胶。尽管这种橡胶的耐压性能不理想,战后便被淘汰了,但它毕竟是第一种具有实用价值的合成橡胶。 3 J. i- @: I) p
# P! B$ O. d* Y& W* I5 P8 v 大约在1930年,德国和苏联用丁二烯作为单体,金属钠作为催化剂,合成了一种叫做丁钠橡胶。作为一种合成橡胶,丁钠橡胶对于应付橡胶匾乏而言还算是令人满意的。与其它单体共聚可以改善了钠橡胶的性能。如与苯乙烯共聚得到丁苯橡胶(Buna-S),它的性质与天然橡胶极其相似。事实上,在第二次世界大战期间,德国军队就是因为有丁苯橡胶,橡胶供应才没有出现严重短缺现象。 苏联也用同样的方法向自己的军队提供橡胶。
3 T0 {' F2 `' O3 T8 a1 a9 E4 {6 M( Y# |
美国在战后大力研究合成橡胶。首先合成了氯丁橡胶,氯原子使氯丁橡胶具有天然橡胶所不具备的一些抗腐蚀性能。例如,它对于汽油之类的有机溶剂具有较高的抗腐蚀性能,远不像天然橡胶那样容易软化和膨胀。因此,像导油软管这样的用场,氯丁橡胶实际上比天然橡胶更为适宜。氯丁橡胶首次清楚地表明,正如在许多其他领域中一样,在合成橡胶领域,试管中的产物并不一定只能充当天然物质的代用品,它的性能能够比天然物质更好。 : W. }- W+ @7 L, W
7 m/ t! {, ?- N8 Q; t* C
1955年美国人利用齐格勒在聚合乙烯时使用的催化剂(也称齐格勒—纳塔催化剂)聚合异戊二烯。首次用人工方法合成了结构与天然橡胶基本一样的合成天然橡胶。不久用乙烯、丙烯这两种最简单的单体制造的乙丙橡胶也获成功。此外还出现了各种具有特殊性能的橡胶。现在合成橡胶的总产量已经大大超过了天然橡胶。 |
|